Detecting Fibred Links and Computing Monodromy

э

・ 回 ト ・ ヨ ト ・ ヨ ト ・

æ

イロト イヨト イヨト イヨト

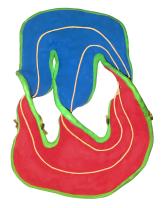
Seifert surface for an oriented link $L \subset S^3$:

- Connected compact oriented surface R;
- $\triangleright \ \partial R = L.$

The orientation on R defines positive and negative sides of $R \times I$ which meet along a thickened copy of the link. *(Sutured product)*

.

Examples of Seifert Surfaces



Seifert surface for the figure-eight.

Thickened Seifert surface for the right-handed trefoil.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- A Seifert surface always exists. (Seifert algorithm)
 - Take any diagram of the link;
 - Find Seifert circles;
 - Get a collection of discs from the Seifert circles;
 - Attach a band between discs for each crossing.

▲ 国 ▶ | ▲ 国 ▶

The genus of a knot K is the least genus g for which a genus g Seifert surface for K exists.

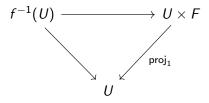
Example

There are genus one Seifert surfaces for the trefoil (Rolfsen 3_1) and figure-eight (Rolfsen 4_1) knots. Since these knots are not trivial, they cannot be genus zero. So the trefoil and figure-eight are genus one.

Fibration

A link is fibred if the complement in S^3 fibres over the circle.

Formally, a map $f: E \to B$ is a *fibration* with fibre F if each point of B has a neighbourhood U and a trivialisation $f^{-1}(U) \to U \times F$ such that



commutes.

• • = • • = •

Fibred Links

A link $L \subset S^3$ is *fibred* if there exists a fibration

$$f: S^3 \setminus L \to S^1$$

such that each component of L has regular neighbourhood $S^1 \times D^2$ where the restriction of f to $S^1 \times (D^2 \setminus 0)$ is given by

$$(x,y)\mapsto y/|y|$$

(well-behaved near L).

It follows that $f^{-1}(x) \cup L$ is a Seifert surface for L for all $x \in S^1$. (Closure of each fibre is a Seifert surface.)

Monodromy

A fibration over the circle is determined by a homeomorphism of the fibre.

- ► Take a fibration E → S¹ with fibre F and pull back along [0, 1] → S¹ to get a fibration over [0, 1].
- ▶ Since [0,1] is contractible, any fibration over [0,1] is trivial.
- So *E* pulls back to $F \times [0, 1]$.
- ▶ Hence there is a homeomorphism $h: F \to F$ gluing $F \times \{0\}$ to $F \times \{1\}$ so that $E \cong F \times [0, 1] / \sim$.

The fibration is said to have monodromy h. (Not unique.)

Checking if a Seifert Surface is a Fibre

How do we know if a given Seifert surface is a fibre for some fibration?

To check if a Seifert surface R for L is a fibre:

- Thicken the Seifert surface into $R \times I$;
- Take the complement of $R \times I$ in S^3 ;
- ▶ If the complement is also a product, then the *R* is a fibre of *L*.

In Detecting fibred links in S^3 (1986), David Gabai presents a simple method for detecting that R is a fibre using decompositions along product discs in the complement.

• • = • • = •

Sutured Manifolds

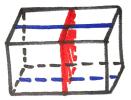
A sutured manifold is a pair (M, γ) where:

- M is a compact oriented 3-manifold;
- ▶ $\gamma \subset \partial M$ is a collection of disjoint simple closed curves;
- The curves can be thickened and are called sutures;
- The sutures divide ∂M into surfaces R_{\pm} with shared boundary γ ;
- The surfaces R_± are oriented oppositely and γ has the induced orientation.

Think of the positive surface R_+ as having an outward normal vector and the negative surface R_- as having an inward normal vector.

A (1) < A (2) < A (2) </p>

Pictures of Sutured Manifolds



Sutured ball $D^2 \times I$.

Product disc.

<ロト <問ト < 目ト < 目ト

Decomposing $D^2 \times I$ along a product disc.

Product Sutured Manifold

A sutured manifold (M, γ) is a *product* if:

- $M = R \times I$ and the sutures thicken to $\partial R \times I$;
- ▶ *R* is a compact oriented surface with no closed components.

Product Disc

A oriented disc D in (M, γ) is a product disc if:

- $D \subset M$ is proper;
- $\blacktriangleright |D \cap \gamma| = 2.$

The existence of a product disc in (M, γ) tells us that the manifold looks like a product in a neighbourhood of the disc.

▲圖 医 ▲ 国 医 ▲ 国 医 …

Product Decomposition

- Let D be a product disc in (M, γ) . The product decomposition along D is (M', γ') where:
 - M' is obtained from M by cutting along D;
 - Any point where the normal orientations disagree is regarded as lying in a suture;
 - The new sutures are γ' .

く 何 ト く ヨ ト く ヨ ト

Product Decompositions Preserve Products

Lemma

Let D be a product disc in (M, γ) and let (M', γ') be the product decomposition along D. Then (M', γ') is a product if and only if (M, γ) is a product. (Gabai 1986)

Proof.

(if)

- Suppose (M, γ) is $R \times I$.
- lsotope D to be of the form $\alpha \times I$ where α is a proper arc in R.
- Cutting along $D = \alpha \times I$ gives $M' = (R \setminus \mathring{N}(\alpha)) \times I$.

(only if)

- Suppose (M', γ') is $R' \times I$.
- *M* is recovered from M' by gluing back in a thickening of *D*.
- (M, γ) is $R \times I$ where R is constructed from R' by attaching a band.

э

イロト イポト イヨト イヨト

Checking if a Sutured Manifold is a Product

Theorem

A sutured manifold (M, γ) is a product if and only if there is a sequence of product decompositions that terminates in $E \times I$ where E is a union of discs. (Gabai 1986)

Proof.

(if)

Immediate from the previous lemma.

(only if)

- Suppose (M, γ) is $R \times I$;
- Choose a family of (pairwise disjoint) proper arcs that cut R into a union of disc;
- A sequence of product decompositions along discs D_i = α_i × I results in a union of copies of D² × I.

э

A D N A B N A B N A B N

Examples of Fibred Knots

The trefoil is fibred.

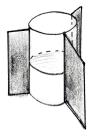
The figure-eight is fibred.

< □ > < 同 > < 回 > < 回 > < 回 >

Constructing a Fibration of the Trefoil

Begin with a fibration of the unknot.

A single page that rotates around the unknot.

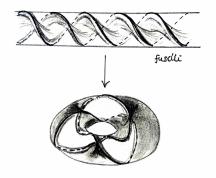


Three pages and a meridional disc.

The trefoil has three-fold symmetry, so we want three pages.

4 3 4 3 4 3 4

Constructing a Fibration of the Trefoil



Rolfsen 10.1 page 327

Similarly, every *torus knot* (or, more generally, *cable knot*) is fibred with fibration looking like fusilli pasta (a corkscrew).

(<)</pre>

Example of a Non-fibred Knot

Rolfsen knot table

The 5_2 knot is the first non-fibred knot in the Rolfsen knot table. (*The* commutator subgroup of the fundmamental group is not finitely generated.)

(<)</pre>

Computing the Monodromy

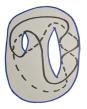
To see *how* the complement of a fibred link is fibred, we can look at how curves flow from one side of the fibre surface to the other under action of going around S^1 .

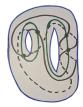
As a fibre surface R turns around the link in S^3 , any arc α with its endpoints fixed on ∂R is dragged from one side of R to the other. It takes a new position when it returns to R and this new position is exactly the image of the arc under the monodromy.

We can construct a piece of the flow by repeatedly sending an arc around, letting it drag a surface behind.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Pictures for the Figure-eight





< □ > < 同 > < 回 > < 回 > < 回 >

э

Monodromy of the Trefoil and Figure-eight

The trefoil and figure-eight knots have fibrations with genus one fibres. So their monodromies can be described by elements of $SL_2(\mathbb{Z})$. (Mapping class group.)

Each element A of $SL_2(\mathbb{Z})$ is either:

- ▶ periodic (where | tr(A)| < 2) or</p>
- reducible (where |tr(A)| = 2) or
- Anosov (where |tr(A)| > 2).

The trefoil has periodic monodromy whereas the figure-eight has Anosov monodromy.

イロト 不得 トイヨト イヨト 二日